OpenCV em C
Em um artigo anterior fiz um exemplo de opencv em Python.
Neste artigo irei apresentar um exemplo de código de opencv em C++.
Irei comentar traçando referencias entre o código do C e o código do python.
O Exemplo utililizado será fornecido pela própria biblioteca em python.
OpenCV em Python
Para traçar um paralelo usaremos os códigos do opencv, o programa chamado video_v4l2.py
Conforme apresentado abaixo:
#!/usr/bin/env python
'''
VideoCapture sample showcasing some features of the Video4Linux2 backend
Sample shows how VideoCapture class can be used to control parameters
of a webcam such as focus or framerate.
Also the sample provides an example how to access raw images delivered
by the hardware to get a grayscale image in a very efficient fashion.
Keys:
ESC - exit
g - toggle optimized grayscale conversion
'''
# Python 2/3 compatibility
from __future__ import print_function
import numpy as np
import cv2 as cv
def main():
def decode_fourcc(v):
v = int(v)
return "".join([chr((v >> 8 * i) & 0xFF) for i in range(4)])
font = cv.FONT_HERSHEY_SIMPLEX
color = (0, 255, 0)
cap = cv.VideoCapture(0)
cap.set(cv.CAP_PROP_AUTOFOCUS, 0) # Known bug: https://github.com/opencv/opencv/pull/5474
cv.namedWindow("Video")
convert_rgb = True
fps = int(cap.get(cv.CAP_PROP_FPS))
focus = int(min(cap.get(cv.CAP_PROP_FOCUS) * 100, 2**31-1)) # ceil focus to C_LONG as Python3 int can go to +inf
cv.createTrackbar("FPS", "Video", fps, 30, lambda v: cap.set(cv.CAP_PROP_FPS, v))
cv.createTrackbar("Focus", "Video", focus, 100, lambda v: cap.set(cv.CAP_PROP_FOCUS, v / 100))
while True:
_status, img = cap.read()
fourcc = decode_fourcc(cap.get(cv.CAP_PROP_FOURCC))
fps = cap.get(cv.CAP_PROP_FPS)
if not bool(cap.get(cv.CAP_PROP_CONVERT_RGB)):
if fourcc == "MJPG":
img = cv.imdecode(img, cv.IMREAD_GRAYSCALE)
elif fourcc == "YUYV":
img = cv.cvtColor(img, cv.COLOR_YUV2GRAY_YUYV)
else:
print("unsupported format")
break
cv.putText(img, "Mode: {}".format(fourcc), (15, 40), font, 1.0, color)
cv.putText(img, "FPS: {}".format(fps), (15, 80), font, 1.0, color)
cv.imshow("Video", img)
k = cv.waitKey(1)
if k == 27:
break
elif k == ord('g'):
convert_rgb = not convert_rgb
cap.set(cv.CAP_PROP_CONVERT_RGB, 1 if convert_rgb else 0)
print('Done')
if __name__ == '__main__':
print(__doc__)
main()
cv.destroyAllWindows()
A primeira informação importante é a carga das bibliotecas do opencv em python.
import cv2 as cvimport cv2 as cv
carga da lib em python
O proximo ponto importante é onde capturamos o vídeo.
cap = cv.VideoCapture(0)
Captura do vídeo
O Parametro 0, indica que o device de vídeo é o padrão do sistema.
O ponto importante no código é o uso do cap, no código abaixo:
_status, img = cap.read()
captura do frame
Ao chamar a função read, dois parametros são retornados, _status (retorno de sucesso) e img, a imagem capturada.
Por fim, uma janela é montada com a visualização da imagem capturada:
cv.imshow(“Video”, img)
janela é montada
Agora iremos analisar o mesmo código em C.
OpenCV em C
Agora mostraremos o código em C, o exemplo é o videocapture_basic.cpp:
#include <opencv2/core.hpp>
#include <opencv2/videoio.hpp>
#include <opencv2/highgui.hpp>
#include <iostream>
#include <stdio.h>
using namespace cv;
using namespace std;
int main(int, char**)
{
Mat frame;
//--- INITIALIZE VIDEOCAPTURE
VideoCapture cap;
// open the default camera using default API
// cap.open(0);
// OR advance usage: select any API backend
int deviceID = 0; // 0 = open default camera
int apiID = cv::CAP_ANY; // 0 = autodetect default API
// open selected camera using selected API
cap.open(deviceID, apiID);
// check if we succeeded
if (!cap.isOpened()) {
cerr << "ERROR! Unable to open camera\n";
return -1;
}
//--- GRAB AND WRITE LOOP
cout << "Start grabbing" << endl
<< "Press any key to terminate" << endl;
for (;;)
{
// wait for a new frame from camera and store it into 'frame'
cap.read(frame);
// check if we succeeded
if (frame.empty()) {
cerr << "ERROR! blank frame grabbed\n";
break;
}
// show live and wait for a key with timeout long enough to show images
imshow("Live", frame);
if (waitKey(5) >= 0)
break;
}
// the camera will be deinitialized automatically in VideoCapture destructor
return 0;
}
O primeiro ponto assim como no código em python, e a chamada da biblioteca em c.
#include <opencv2/core.hpp>
#include <opencv2/videoio.hpp>
#include <opencv2/highgui.hpp>
Sem esses includes não teriamos acessos aos tipos do C, como o que segue:
VideoCapture cap;
O tipo VideoCapture é o tipo associado a captura de vídeo da câmera.
Onde usaremos, conforme fragmento abaixo:
int deviceID = 0; // 0 = open default camera
int apiID = cv::CAP_ANY; // 0 = autodetect default API
// open selected camera using selected API
cap.open(deviceID, apiID);
Aqui, definimos o deviceID como 0, ou seja, o valor padrão, veja a semelhança do uso do python.
E apiID, passando o escopo (variavel) CAP_ANY, que tem por valor 0.
Chamamos o método open da classe VideoCapture, indicando o deviceID, e o apiID.
Agora iremos ler a imagem da camera, que podemos fazer, através da seguinte função:
cap.read(frame);
Neste fragmento de código, passamos o parametro frame, que é do tipo Mat.
O frame receberá a imagem capturada.
E por fim, no código abaixo a janela que irá mostrar a imagem na interface gráfica.
imshow("Live", frame);
Conclusão
Apesar das diferenças de linguagem, podemos ver o pontos em comum, e a sutileza da semelhança.
É lógico que os códigos foram escolhidos a dedo. Justamente por conta da semelhança e simplicidade.
O opencv é uma biblioteca rica, cheia de opções e dificuldades, este tutorial, bem como o autor, esta apenas adentrando neste mundo para mim misterioso.
Espero que tenham gostado deste artigo. 😉